Spotify does WViecl ImiEro Ly

BB Are your attention patterns

1 .. much better
ey T0O BIG?

Honestly. Same.
Let's talk :)

UNIVERSITY OF

0),430)24D

J Rosser, José Luis Redondo Garcia, Gustavo Penha, Konstantina Palla, Hugues Bouchard

Needle in a Haystack

o TL:DR
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Below we visualize how the pruned mask
preserves the critical blocks linking the needle to the final token,
while discarding the majority of irrelevant edges.
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e Many existing mech interp tools scale quadratically with context e o a0 ado0 s s 0z a0 coo0 s
length. E.g. Caching all attention patterns in Gemma 3 4B = T =k T ™
would require 3.84TB. pol ;|

e So, can we use sparse attention algorithms to preserve model L s ] N ([l e .
behavior during interpretability experiments? 3 5o T0y 35000 T o 1 oo e

e ThOng ht Anchors e The second figure shows the difference between successful and

unsuccessful retrieval settings, revealing a small set of paths
that consistently carry the needle signal forward.
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97-99% of attention links, the method reliably surfaces anchor RS RS B
regions tied to problem setup, planning, and answer emission.
e As context grows, attention shifts from local computation
toward higher-level steps such as planning, uncertainty
management, and self-checking, revealing increasingly

structured reasoning behavior at scale.

e TJogether, these visualizations illustrate that

Limitations and Discussion
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ol ol e | e Stream omits key parts of transformer
- s computation and relies on heuristic

e Pruning can introduce positional biases,
especially near the end of long contexts.
e Future work includes adaptive sparsity and
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l output-matching rather than formal guarantees.
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modeling information flow beyond attention
g L alone.
F o it | i il - ' I’m eager to collaborate with researchers
o B T wnkreston Y everoson interested in applying, evaluating, or extending
I ommomn  Cmmmo Stream.
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